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SUMMARY

These notes are directed at the newcomer to nonlinear programning for whom a

thorough understanding of Lagrange multipliers, the Kuhn-Tucker conditions and the duality

theorem is essential. The notes attempt to explain these foundations of the theory and

what motivates them. Special cases of one or two dimensions. are considered and are

extended by means of the notation of vector differentiation to the case of n variables.

The reader is taken in stages from the problem of unconstrained minimization, through

the equation constrained problem, to the general constrained problem. The important

Jacobian assumption is also discussed.
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I INTRODUCTION,

These notes are directed at the newcomer to optimization and nonlinear programing.

Such a reader is confronted with a bewildering maze of conflicting and, in the author's

opinion, inadequate notation. This is perhaps to be expected in one of the newest and

most rapidly developing branches of mathematics, but it is a pity because the foundations

of the subject can be made to appear deep and subtle, when in reality they consist of

simple results that are easy to derive.

optimization is concerned with the problem of minimizing a function of several (and

often many) real-valued variables. If the variables themselves are restricted to satisfy

other functional relations, the problem is said to be constrained. It should also be

noted that if we are able to minimize a function f then we can also maximize the

function - f , and vice-versa.

Nonlinear programming consists largely of a collection of algorithms for use by

a computer to solve optimization problems that involve nonlinear functions. These

algorithms are always iterative and, for unconstrained problems, the iterations are

designed to converge to points that satisfy various necessary and sufficient conditions.

In addition, for constrained problems the techniques of Lagrange multipliers and the

duality theorem are required to help ensure the iterations converge successfully.

A thorough knowledge of these foundations of optimization theory is thus essential before

algorithms to solve practical problems can be written, efficiently implemented, or their

results meaningfully interpreted.

In these notes we try not only to explain the foundations of the subject but also

to show what motivates them, in the hope that this will increase the beginner's insight

into the theory. We proceed by considering the special cases of functions of one or two

variables and use geometrical interpretation to aid our understanding. The results thus

obtained are then extended, by means of the notation of vector differentiation, to the

case of functions of n variables, where the reader no longer has a geometrical crutch

to rely on. The results obtained for the n-dimensional case bear a striking similarity

to those for the simple case. It is hoped that this similarity will help to further

increase the reader's understanding.

Also, these notes are deliberately structured to take the reader in stages from the

comparatively simple problem of unconstrained minimization, through the equation

constrained problem (sometimes called the equality constrained problem) to the general

constrained problem (ie minimization subject to both equation and inequality constraints).

However, it is shown that by employing the concept of active constraints the general

f constrained problem is dealt with by considering it as an equation constrained problem.

The important Jacobian assumption is also explained and the consequences of not

* assuming it to hold are discussed.

2 PRELIMINARY THEORY

In this section we mention some less well-known notation. The notation is adhered

to throughout the rest of these notes. The reader should beware since other authors may
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use different notation or they may use the same notation to denote different or even

contradictory statements.

2.1 Notation

We denote the column vector of n variables x, ... ,x n by In these notes,

underlined lower case letters will always denote column vectors. It will usually be

made clear in the text whether the vectors are constants, variables or vector functions.

Matrices will sometimes be denoted by capital letters.

By

A = (a..) or a.. = (A)..
13 'j 13

we shall mean that A is the matrix whose ij-entry is a..

Let A = (ai) and B = (bi ) be two m x n matrices. We shall write A B if

and only if a.. < b.. for all ii .

Suppose f is a function of n variables. Instead of writing f = f(x1,...,x n)

we shall frequently write f = f(x) and say that f is a function of x . Suppose

fl .... f'm are m functions of x . We can write this as f(x)

2.2 Vector differentiation

By vector differentiation we mean the differentiation of a function with respect

to a vector. Note that the function can itself be a vector.

Let f be a function of n variables x . Then if the partial derivatives

f f
a all exist define

df A
dx

where the symbol A means that the left hand side is defined by the right hand side.

Note that many writers use the symbols Vf, Vf or grad f to denote vector differen-

tiation (see, for instance Luenberger , Dixon). However, with their notation it is

sometimes not immediately clear which vector the function f is being differentiated

with respect to. Also, with our present notation, many of the familiar results of

scalar differentiation need little modification when extended to the case of vector

differentiation. Thus the present notation is a useful memory aid and also provides good

insight into how results are extended to more than three dimensions.

A few writers use the symbol f/ax to denote vector differentiation (see
3Intrilligator , from whose notation the present one has been modified). When we come to

extend the concept of partial derivative to the vector case we shall see that this nota-

tion too can be confusing and inadequate.

S



Let f be an m x I vector function of x . If the partial derivatives

Iax.l
ax. I

exist, then define

af If

df .

dx 
a;/

n n

is called the Jacobian matrix of f

dx

The definition of the second derivative of f , where f is now a scalar function,

logically follows.

We define

a2 fa2f

ax ax ax Iax

d2f A2

dx 2 2 xFx

axlax axlax

2 2 fdxf is called the Hessian matrix of f

-AfWith this notation, Taylor's series for functions of n variables x is written

- + df .Axdf
f(3 + Ax) - f(x) + Tx T I---T4x +

dx-

It is straightforward to give df/dx a geometrical interpretation. The gradient

of f at x0  along a direction v is defined as

0 f(x0 + hv) - f(x0)00 lim -0
• h< h-0
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Now from Taylor's series,

f(x 0 + hv) -f(x 0 ) 2 - f + _L h T --- f v + O(h2

h dx 2! Y 7-2 h
dx

T df
so that the limit is v - , which is the component of df/dx along v From element-

ary linear algebra we know that this is greatest when v lies along df/dx . Hence

df/dx is the gradient of f along the line of steepest slope.

We now extend our notation to the case of partiaZ differentiation with respect

to vectors. From the theory of scalar partial differentiation, if f is a function of

x1,...,Xn then

df dx 2f + . + DX -f =  dxT df

I ~ ~ dxx3 dx
n-

Suppose now that f is a function of two vectors x and x where Z is m x 1.

Then

af af + f + f+ fdf= dx I -. + ... + dxn  +d I -- y y

Iax n ax n y I ay M-

dxT f + d
T  y

where we use curly a to emphasise that differentiation is taking place with respect
to only one of the possible vector variables.

The concept of total derivative can also be extended. Suppose the vector y is

a function of x . If we keep all the independent variables except xi , say, fixed

and allow xi  to vary, then the dependent variables will also change. The total

rate of change of f will then be given by

) xi ) ay, ... + i Vxi}-.. x xN -x,z x x

.,,
, T

+x.) + ) af (2-2-1)

where the vector suffixes attached to the derivatives are a reminder that the derivatives

with respect to x. are not equal - the x indicating, where it is present, that all

the x (except xi) are kept fixed, the y indicating that all the dependent variables

are kept fixed. We then define the total derivative of f with respect to x by

d f L +x (2-2-2)
x a x dxa y
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Equation (2-2-2) is of course obtained by repeating (2-2-I) for i = I,...,n and writing

the result in vector form.

Many of the familiar standard results of scalar differentiation can be extended

in a modified form to the vector case. Some of these results are used in subsequent

sections. They are stated in Appendix A for the reader's convenience.

2.3 Tangent spaces and contours

When considering functions of two or three variables we can use our geometrical

intuition to give us insight into the mathematical problem. This is reflected in the

terminology we use. We say that

f(x,y,z) = 0 (2-3-1)

represents a surface and that if the partial derivatives 3f/3x , Df/3y and af/az are

continuous, then the surface (2-3-I) is smooth. The vector

is called the normal to the surface, and since equations of the form

ax + by + cz = const

represent planes, the equation

2f If If 0f If If
ax + y -y + z- = 0  0 + yo 0 y + Zo-07

must represent the tangent plane to the surface (2-3-I) at the point (xY0 ,ZO ) T.

Provided that the surface (2-3-1) is nowhere perpendicular to the (x,y) plane

(ie af/3z is nowhere zero) our geometrical intuition tells us that we can draw contours

of (2-3-i) onto the (x,y) plane of the form

g(x,y) - const . (2-3-2)

Algebraically we do this first by transforming (2-3-]) into

h(x,y) = z

(our geometrical intuition suggests where this might not be possible) and then sub-

0 stituting constant values of z to obtain a family of contours like (2-3-2).

When our problem functions are of more than three variables, we no longer have

a geometrical crutch to lean on, but the symbols we use look similar and so we employ

a similar language. We say that

f(X) - 0 (2-3-3)

. - . , 5 ' 'I " I ° i 'm I , . . . ... . ', -_ :.. ._ .' -t ..
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defines a surface whose tangent hyperplane or tangent space at x0 is given by

T df T Tdf

where dfldx is the normal to (2-3-3).

From the implicit function theorem (see Appendix B), provided Df/Dx isn

nowhere zero, we can rewrite (2-3-3) as

g(x1,....Xn) = xn  (2-3-4)

which we interpret as a family of contours like

g(x1 .... x) = const

setting x = 0 we obtainn

g(x 1,...,X I ) = 0

which only underlines the obvious fact that the terms 'surface' and 'contour' are inter-

changeable. We shall use the term 'contour' in these notes.

Finally, we shall find it convenient to define a path from some starting point *x0

to some endpoint x , say, to be a sequence of points x0 ' x 1, x2 ... which converge to x.

3 THE UNCONSTRAINED PROBLEM

In this section we consider the unconstrained minimization problem

U minimize f(x)

and we wish to obtain the necessary and sufficient conditions that x* be a solution

of U . We derive these for the one-dimensional case first, in the hope that this will

provide insight when we come to discuss the n-dimensional problem.

The only assumption we make is that f(x) is continuously twice differentiable.

This by no means restricts the scope of our theory since all practical problem functions

can be approximated by polynomials that satisfy our assumption. We also restrict our

V definition of a minimum of f to exclude - This is not only convenient for us, but

$it also reflects the fact that iterative algorithms would fail to obtain such minima.

3.1 The one-dimensional case

We are interested in the one-dimensional problem

Li minimize f(x)
L

.--- _. . .... .. , ,
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By a solution of U1 we mean a real number x* such that

f(x* + Ax) > f(x*)

for all small enough numbers Ax . Notice that this definition implies that f(x*) might

only be a local 7ninim of f . In other words, there may be some other numbers x

satisfying f(x) < f(x*) and our definition only ensures that they cannot be near to

x* . In particular there cannot be a path joining x* to i that a computer algorithm

might follow and along which the value of f progressively decreases.

It is well known that the first order and second order necessary conditions for x*

to be a solution of U1 are, respectively

df
d (x*) = 0 (3-1-2)

and

d2f (x*) 0 (3-1-3)
dx

2

whilst the sufficient conditions are

df d2f

d- (x*) = 0 and !L (x*) > 0 (3-1-4)
dx

These results are derived from Taylor's theorem

df t& 2 3 ~
f(x* + Ax) = f(x*) + Ax -K (x*) + Ax d (x*) + O(Ax 3  (3-1-5)

x dx2

Using (3-1-5) to eliminate f(x* + Ax) from (3-I-1) and taking f(x*) from each side

gives

SAx A! (x*) + jAX 2 d 2 (x*) + O(Lx 3) 0 0 (3-1-6)
dx dx 2

Suppose we set Ax > 0 , then division of (3-1-6) by Ax gives

2
d_ (*) + Ax d'f (x*) + O(Ax2) > 0 (3-1-7)
Sdx dx

If we now let Ax 0 O+ we see that (3-1-7) implies

A.d (x*) > 0 . (3-1-8)~dx
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A similar process for Ax < 0 gives

df (319)0
df

(3-1-8) and (3-1-9) can only be both true if (x*) 0 and so we have the first

result (3-1-2).

Now eliminating df/dx from (3-1-6) by using (3-1-2) leads to

7 d'f3

jAx -f (x*) + O(Ax 3) 3 0 (3-1-10)
dx2

Dividing (3-1-10) by %x-/2 which is always positive) leaves

d f
, (x*) + O(Ax) > 0 (3-1-11)

dx-

On letting Ax 0 0 we see that -- (x*) > 0 . This is the second order necessary
dx2

C"(Idi t ion ( 3-1- ) .

To prove the sufficiency conditions (3-1-4) we assume that they hold and show that

this implies f(x* + Ax) > f(x*) for all sufficiently small Ax

Now from the mean value theorem and the second man value theorem, we know that

there are numbers E 10,11 such that

df (x* + )= f(x* + Ax) - f(x*) (3-1-12)

dx Ax

and

f-f (x* + Ax) - (x*)
ddx dx"2 (x* + =Ax (3-1-13)

(Ix

dfsince, by hypothesis, (x*) = 0 , (3-1-13) implies that

d2f 1 df- *+ nAx) -- (x* + Ax) (3-1-14)

dx
2  Ax dx

Now -2 (x*) > 0 means that df/dx is strictly increasing, at least near to x*
dx

Since x (x*) 0 and f(x) is continuously differentiable we must have from (3-1-14)
dx

that

d-- (x* + Ax) > 0 for Ax > 0 (3-1-15)
dx
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and
df (x* + CAx) < 0 for Ax < 0 (3-1-16)

for small enough Ax

We can write (3-1-15) and (3-1-16) together as

Ax f (x* + Ax) > 0 (3-1-17)

but (3-1-17) is just the left hand side of (3-1-12) multiplied by 6x . Therefore, the

right hand side of (3-1-12) multiplied by Ax is

f(x* + Ax) - f(x*) > 0

and so x* is a solution of V]

3.2 The n-dimensional case

The necessary and sufficient conditions for the n-dimensional problem U can be

derived in a similar manner. For the reader's convenience we state them first. We

stress once again that they are only conditions for f(x*) to be a locaL minimum of f

The first order and second order necessary conditions for x* to be a (local) solution

of U are respectively

df (x*) = 0 (3-2-1)

and

AxT f a 0 (3-2-2)
dx 2

for all small enough vectors Ax . The sufficient conditions are

df (x*) = 0 and AxT d  
Ax > 0 (3-2-3)

d -__ dx 2

The reader should be immediately aware of the similarity of these conditions with

the one-dimensional case. They are also derived in a similar manner. The Taylor

series in n dimensions gives

- 2df (x*) It T d d f

f(x* + Ax) = f(x*) + Ax (x ) + T! Ax (x*)Ax + (3-2-4)
x - .- dx2

Writing Ax Ax where C is the unit vector in the direction of Ax and Ax is the

magnitude of Ax , (3-2-4) becomes

f(x* f(x*) + Ax - (x*) + ILx Ax T d 2 f (X*)u + (3-2-5)
TX - D - d2

To derive the necessary conditions we assume x* is a solution of U, je

f(x* + Ax) f(x*) (3-2-6)

for all vectors Ax . Substituting this inequality into (3-2-5) gives

.- .. -... ... .
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T df 2
0 Axu T  (x + ax T- d 2f (x*) + 0(Ax3) (3-2-7)- x_ - dx2

As in the one-dimensional case, we divide (3-2-7) by Ax > 0 and let Ax - 0+ to obtain

.T df
_ (xi) 0 (3-2-8)

If we now return to (3-2-4) and make the substitution Ax - Ax i where a is now the unit

vector in the opposite direction to Ax , so that the magnitude of x is - Ax, we can

obtain, in the obvious way

,T df
- - (x*) > 0 . (3-2-9)

(3-2-8) and (3-2-9) can only hold if

-T df
2 u - (x*) = 0 (3-2-10)

If we let i run through the co-ordinate vectors e. in turn, we see that (3-2-10)
3f df

implies 'f (x*) = 0 for all i , and hence - (x*) = 0 . This is the first order
1

necessary condition as required.

Because d (x*) = 0 , (3-2-7) becomes

0 < l&x2_ r
-- (x*)ci + O(Ax 3 ) . (3-2-11)
dx

2x

Dividing by JAx 2 and letting Ax -* 0 we see that

"- Tdf (x*) 0 (3-2-12)
dx

for all unit vectors u and hence for all vectors Ax = Axu Thus we have proved the

second order necessary condition.

All that now remains is to verify the sufficient conditions (3-2-3). From the

mean value theorem in n dimensions and the second mean value theorem in n dimensions

(see Appendix B) we know that there is a number & C [0,11 such that

df

AxT (x* + EAx) = f(x* + Ax) - f(x*) (3-2-13)

I and for all n > 0,

- -
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df + f (x*) + n d2f (x*)Ax + 0(n ) (3-2-14)
x- dx- dx2 - -

Noting that, by hypothesis, -L- (x*) - 0 and premultiplying (3-2-14) by AxT we have

Tdf Tdf2

AxT df(x* + nAx) = nAx T d2 (x*)Ax + 0() (3-2-15)- x - - dx2

The right hand side of (3-2-15) is greater than 0 (at least if n and Ax are small

enough) since 2f (x*) is positive definite (ie AxT d 2- f (x*)Lx > 0 for all Ax 0 0,
dx2  dx2

again by hypothesis). Therefore the left hand side of (3-2-15) is also greater than 0

ie

ATdf (x* + nAx) > 0 (3-2-16)
- dx

for all (small enough) n > 0 . By considering (3-2-13) we see that (3-2-16) implies

f(x* + Ax) - f(x*) > 0 . We have thus shown that the conditions (3-2-3) are sufficient

for x* to be a solution of I'

3.3 The quadratic unconstrained problem

We end this section by discussing the special case of U when f is a quadratic

function of x . The quadratic problem is important because many practical functions

can be approximated by quadratic functions, at least close to their minimum x* . The

well-known least squares method of solving

Ax = b

by writing

e = Ax - b

and minimising c is an example of a quadratic probem. The quadratic problem also

serves as a useful illustration of the general case.

The general quadratic problem is

GQ minimize (f(x) T TAx - b Tx +C
% X

4

There are several simplifying assumptions that we can make. First of all without loss

of generality, A can be replaced by a symmetric matrix. Secondly, since

min f(x) = min{f(x) - c} + c

x x

we can set c = 0 . So we shall consider the problem
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Q minimize (fIx W TAx b b)
X

where A is syzametric.

We derive a theorem that tells us something of the conditions under which the problem Q

has got a solution. The theorem's implications for the two-dimensional case are then

more fully explored with the hope that the discussion will increase the reader's

understanding of the theorem. However, we first introduce some preliminary definitions

(see Kreyszig4 ).

Let A be an n x n matrix. A number A which satisfies the equation

Ax = Ax (3-3-1)

for at least one non-zero vector x is called an eigenvaLue of A . The non-zero

vectors x which satisfy (3-3-I) are called the eigenVectors corresponding to A . It

can be shown that if A is a real symmetric matrix then all its eigenvalues A.,

are real (though not necessarily distinct) and that n corresponding orthogonal eigen-

vectors x' .. ..x can be chosen.

The rank of a matrix is the number of its linearly independent columns. Let A

be an n x n matrix of rank r . Then it can be shown that A has exactly n - r

zero eigenvalues.

An n x n matrix A is said to be positive definite if

XTAx > 0 (3-3-2)

for all non-zero vectors x . If the strict inequality sign > in (3-3-2) is replaced

by then A is said to be positive semi-definite. It can be proved that if A is

a symmetric n x n positive semi-definite matrix of rank r then n eigenvalues

A n exist, exactly r of which are positive (but not necessarily distinct) and'" ' n

the remaining n - r eigenvalues are all zero. It should be clear from the above that,
corresponding to the A. I n orthogonal eigenvectors xl'"''n can also be chosen.

We are now in a position to state and prove our theorem.

Theorem Let A be a positive semi-definite matrix of rank r . Let x1,...,xn-r be

the orthogonal eigenvectors of A corresponding to zero eigenvalues. Then the problem

Q has a solution if and only if the vector b is orthogonal to every linear combination

of x... x -n-r

Proof Since A is positive semi-definite, there exists a vector x0 0 such that

T AxO . 0 G

Therefore
Tf(x0) - x = 8, say.

-0 -
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By considering, if necessary, -L0  we can set 6 0 , without loss of generality.

But if B < 0 then f(rx0 ) = r6 -- as r . Hence Q has no solution. (Except

for the excluded case f(x*) --. ) Let xxnr+l , .. n be the remaining orthogonal

eigenvectors of A with positive eigenvalues Xn-r+l ,...,Xn . Now we may write

= Kl + ... + an-n for some unique a ...$an since the eigenvectors form a basis.

Therefore

xTAx = O( Xx + .. +a x)
0-0 -0-1 1- n n-n

=2T (a X xaXx
0n-r+l n-r+1-n-r+ + + n n-n

since X, = ... = = 0 .I n-r

T I T T)(
Therefore xA U0  = +x1  + ... + a n X-

a2  X T , +.. + 2 xT (3-3-3)n-r+J n-r+1-n-r+J-n-r+1 n n-n-n

since the x. are orthogonal. But the right hand side of (3-3-3) is positive if at

least one a. o O, (i = n - r + I ... ,n) . Hence a. = , (i = n - r + I,...,n) since
xAxo = 0.
00-

Therefore X0 = 0. 1 +  - + 'n-r -n-r+I

Thus x 0 is a linear combination of xV,...xnr+l ' Thus any vector x0 such that
x Axo . 0 must be a linear combination of x " We have shown that if
-0 -0]- n-~
bTx # 0 where x is a linear combination of x,, .... 9 r then the problem Q has

no solution. We have thus proved the first part of the theorem: Q has a solution only

if b is orthogonal to ev2ry linear combination of x1 ,...,x n- r . Note that the

case b = 0 always has a solution x* = 0

We next suppose that b is orthogonal to every linear combination of x ,...,Xn-r
We can write

X = ]x] + ... +a x- - n-n

and

b = x] +... + x
-- In-n

CUsing the above arguments we have

xT 2 T T 2 T
x Ax n-r+l n-r+I-n-r+I-n-r+l + + arXn-n-n
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Without loss ot generality, we can assume the x. are orthonormal. We get-1

xTAx a 2 2 + ... + 02A
- l n-r+1 n n

But since b is orthogonal to every linear combination of x , ...,xn -r

bx ci 8~~~a~ +.

b - n-r+1 n-r++ n n

therefore
nZ

f(x) - a.a. 0.# 0)Z i 1 I I I
i=n-r+ ]

therefore

n 2

min f(x) = min i2Xi2 _ii = _

- i-n-r+l i

Hence Q has a solution if b is orthogonal to every linear combination of x ,...,Xn- r

We conclude this subsection by considering five examples as an illustration of the

above.

(J) z = y2 + x2 = (x y) 1 0) (
0 1

The minimum of z is obviously at the origin (see Fig 1).

Note that ( 0) is positive definite and has no zero eigenvalues.

(2) z = x2 + y = (x y) 1 : : + )0

This has no (finite) minimum (see Fig 2). Note that 1 0)
(0 0

is positive semi-definite and has a zero eigenvalue with eigenvector (0 )

4

-J ",, .. . . l1'' l I i ' .. - --- r v "-" .. . . .. ..
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Because (1 0) is positive definite, the function,

similar to that of example (2 )in other respects, has got a unique minimum (see Fig 3).

We know, from the theory of general f(x) , that if A(= d2f/dx ) is positive definite

then there exists a solution.

(4) z = 2 - x = (x y) (1 :) (:)(x Y) ()

This is an example of a quadratic function with a positive semidefinite matrix that has

got a solution (actually an infinite number of solutions - see Fig 4).

The eigenvector (0) corresponding to the zero eigenvalue is orthogonal to b = ()

(5) z = y 2- x = (x Y) -x

We include this example as an illustration of what f may look like when the matrix is

non-definite (see Fig 5).

4 THE EQUATION CONSTRAINED PROBLEM

In this section we consider the equation constrained problem

E minimize f(x) subject to q(x) = 0
X

where the vector equation q(x) = 0 represents m equation constraints of the type

qi(x) = 0 , all of which must be satisfied at the solution x* of E

Any point x which satisfies q(x) = 0 we shall call feasible. Suppose x is

a feasible point. If x + Ax is also feasible, then Ax is said to be feasible at x

or sometimes a feasible direction at x . By a solution of E we mean a feasible point

x* such that f(x*) < f(x* + Ax) for all small enough feasible directions Ax at x*

As before we assume that f(x) is continuously twice differentiable and that f(x*) >-.

Finally we stress again that our theory concerns local solutions to our problems.

We shall begin our discussion by examining the two-dimensional situation and using

any insight gained to help us tackle the n-dimensional problem.

4.1 The two-dimensional problem

The simplest equation constrained minimization problem is the two-dimensional

E2 minimize f(x,y) subject to q(x,y) = 0
x,y

I, , . . . -' r
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The constraint equation can be thought of as a contour in the (x,y) plane. Provided the

contour is not everywhere parallel to one of the axes (so this rules out q(x,y) = x = 0

for instance) it is possible to rewrite the constraint as

y . ()

The problem E2 becomes

El minimize f(x,'(x))

x

and the solution of this problem is given by

df 9f f dv
df - + OI-X 0 (4-1-1)
dx 3x ay dx

where df/dx is merely the gradient of f along the contour y = Y(x) . Suppose, for

the moment, that 2y 1 0 (but we shall bear this assumption in mind in the following

discussion). (4-1-1) can be rewritten as

d _y af (4-1-2)

dx y/ ax

Also we can write the equation constraint as

q(x,y) = q(x,T(x)) = 0 . (4-1-3)

Differentiating (4-1-3) totally with respect to x we get

a = =, 3 X = 0 (4-1-4)

dx 3x y dx

it we assume -q # 0 , we can write (4-1-4) as

(4-1-5)
dx 3y) ax

.4 Equating (4-1-2) and (4-1-5) and rearranging we get
C>

a-- --y = f 2y, (4-1-6) O

* where we have assumed -q 0 If we set the value of each side of (4-1-6) equal to -X

S |"- -: -(, -m " a, x' " . . --
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we can write

f X 0 (4-1-7)x ax

= 0 . (4-1-8)

Lagrange (1736-1813) noticed that (4-1-7) and (4-1-8) are simply the conditions that

are necessarily satisfied by a stationary point of the function

£(x,yX) = f(x,y) + Xq(x,y) (4-1-9)

whilst the condition

-- = q(x,y) = 0 (4-1-10)

simply incorporates the constraint into the problem. X is called the Lagrangian or

augmented function of the problem and X is called a Lagrange muZtiplier.

We seek some geometrical interpretation of the algebra. Equations (4-1-2) and

(4-1-5) simply state that at the solution of E2, the gradients of the contours

q(x,y) = 0 (4-1-11)

and

f(x,y) = f*

are equal, where f* is the value of f at the solution (x*,y*). We find that this

interpretation agrees with our geometrical intuition (see Fig 6). For if the gradients

are not parallel, then the contours must intersect at an angle. Except for the special

case when the constrained minimum and the unconstrained minimum coincide, this must

mean there are points on the constraint contour (4-1-11) on one side or the other of

(x*,y*) where f < f* , which is a contradiction.

It is important to note that the method of Lagrange multipliers may sometimes

be used when the problem functions do not satisfy the assumptions made in the above

discussion, namely that f/ay , Dq/x and aq/ay are non-zero. These assumptions

were only made in the interest of easing our derivation of (4-1-7) and (4-)-8) and

ensured the existence of a unique Lagrange multiplier

a f 1a f

x ax y

In fact the method of Lagrange multipliers will work even when our above

assumptions do not hold, provided there exists a X (not necessarily unique) as well

as x and y which satisfy (4-1-7), (4-1-8) and (4-1-10). The sufficiency of this

is proved in section 4.3 for the more general n dimensional equation constrained case.
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We do not bother to prove it here because the reader would gain little geometrical

insight from the proof for the present (two-dimensional) case.

4.2 The n-dimensional problem

As usual, we merely extend the notation of the two-dimensional case to the

n-dimensional situation. However, we must first make two assumptions about the equation

constraints

q(x) = 0 (4-2-I)

The first assumption we make is that the feasible set (ia the set of all points satisfying

(4-2-10 is such that there is a path an iterative algorithm can follow from some starting

point to the solution x* . For the purposes of these notes, we shall express this

succinctly by saying that x* is assumed to be not isolated. If no such path exists the

point x* is said to be isolated. The second assumption we make is much less obvious.

We shall assume that
dq

rank dq (x*) = m (4-2-2)

in otherwords, the gradient vectors

dq1  dq
(x*) (x*)dx -'"'dx -

are linearly independent. (4-2-2) is called the Jacobian assunption. We make this

assumption because (as we shall see) it considerably simplifies the general proof of the

method of Lagrange multipliers. However it is important to note that in general the

equation constraints will not satisfy (4-2-2). The implications of this are discussed

more fully in section 4.4.

We wish to solve the problem E where the m equation constraints q satisfy the

Jacobian assumption. Note that the q then also satisfy the conditions of the implicit

function theorem (see Appendix B). Therefore there exists a vector function T such

that (re-ordering the x. if necessary)
1

x. = i(X , x) =, .,1 1 mI n
' ' 9

If we write

= (xm+1 ,...,xnT

and

Y = (x1,...,xm)T

then by the Jacobian assumption rank (q/v) = m and our problem becomes

Eu minimize f('(C),u)
S .u
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From equation (3-2-1) a first-order necessary condition that u* be a solution of Eu

is that

df 3 f + d 0 .(4-2-3)

du u du v -

But

q(x) = q('(u),u) = 0

dq aq dv aq
therefore -= = = + d 3v = 0. (4-2-4)du au du 3v

By our above rearrangement, aq/Dv is non-singular. Hence we can write

dv 3 a
d-= = - = (4-2-5)
du au \3v(

Substituting (4-2-5) into (4-2-3) gives

df 3 f q ( .q L af (4-2-6)
du 7] -"

Now because ( 2% HI = I(4-2-7)

it follows, by postmultiplying (4-2-7) by af/3v that

q a f af

or rearranging we get

af q= 0 (4-2-8)ay - VTZ 7v --

If we write

= ( y (4-2-9)

then equations (4-2-6) and (4-2-8) can be written as

00 - 0 (4-2-10)
au au-

and

af= 0 (4-2-11)

E-"- --- A- .f- M
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But u and v are merely partitions of a rearrangement of our original vector x , so

that by recombining u and v , and rearranging if necessary, (4-2-10) and (4-2-11) can

be written succinctly as

~f 3q
.f +q__= X 0

ax ax - -

Thus a first order necessary condition that x" be a solution of E is that

(x*) = 0 (4-2-12)

where £() = f(x) + qT . As already discussed for the two-dimensional case, the

condition (x*,k) = 0 is just a restatement of the constraints q(x) = 0 . Notice

also that because of (4-2-9), the Jacobian assumption guarantees the existence of unique

Lagrange multipliers X

In view of (4-2-12) therefore, the solution of any equation constrained problem E

satisfying the Jacobian assumption, is also a stationary point of the associated Lagrangian

function £ . This is a very useful result because algorithms to find a stationary point

of the equivalent Lagrangian problem are of course much easier to design than algorithms

to solve the original problem E

4.3 Second order conditions

For the reader's convenience we begin this section by stating the second order

necessary and sufficient conditions that x* be a (local) solution of E . As we shall

see, they are very easy to prove.

The second order necessary condition is that

xTI d2C (x*)ax > 0 (4-3-1)
dx

2

for all small enough vectors Ax that satisfy Ax -x(x*) = 0T. The sufficient
-dx-

conditions are

(x*) 0

- (x*) = g(x*) = 0 (4-3-2)

and

AxT 2. (x*)Ax > 0- x2  - _>
ax

T dq Tr
for all vectors Ax that satisfy Ax .7 (x*) = 2
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But along the contour u = u(v) , d 2£/du 2  = d 2f/du . In view of (4-3-3), equation

(4-3-6) means that

AuT du d2 C -d(

Sdu Au >- 0 (4-3-)

for all vectors Au

Let Ax be any vector satisfying

Tdq oT

A d 0  (4-3-8)

-d.

Partitioning AxT  into (AvT Au T) where Av and Au are column vectors of appropriate

length, (4-3-8) can be rewritten as

Tdq Tq TAvT- +Au -- = 0
- v - )u

By the Jacobian assumption, 3q/4)v is nonsingular.

/) q \-I

Hence postmultiplying by v gives

T -T (d ]
AV A Au Tu T

In view of (4-2-5) we have shown that

T T dv
Av = Au

- - du

Hence

S Tidy I T dx
Ax = Au Au(4-3-9)

- - du I -du

We have, therefore, proved the second order necessary condition since in view of

(4-3-7), equation (4-3-9) implies that

Ax -d Ax > 0
dx

2

for any vector Ax satisfying (4-3-8).

We now prove the sufficiency conditions (4-3-2). Note carefully that they imply

the existence of a set of (not necessarily unique) Lagrange multipliers X . For reasons

discussed in the next subsection, we prove the sufficiency of (4-3-2) without appealing

tc the Jacobian assumption. We shall assume that (4-3-2) holds and that x is not

a solution of E . We then obtain a proof by arriving at a contradiction.

.. ... .. "-- . .. . ' '"--" -. " - , - : -. .

- -k, , [ ... . . '' , . , .. .
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If x* is a feasible point and not a solution of E , then since x* is not

isolated (see section 4.2), there must exist a sequence of feasible points

x = x* + Ax which converge to x* and which satisfy f(xn) f(x*) , n = 1,2,...
-n - -n - - <

Let -n be the unit vector along the direction of Ax n Then the sequence ulau2,...

is obviously bounded and Ax = Ax u where Ax n 0 is the magnitude of Ax . It-n n-n n -n

is easy to show that Ax n 0 as n -n

5
It is well-known that a bounded sequence has a convergent subsequence . Hence

'V .... has a convergent subsequence. Let this subsequence be yI' Y 2 .... and

suppose it converges to y . Let the corresponding modulus of each vector yn be Ayn

such that z = x* + AY y n is a feasible vector.-n - nn

Now since each z is feasible we have that-n

q(z) - q(x*) = 0

Dividing by Ay n we have

q(x* + Ayn~In~ q(x*)
- - =0

Now from Taylor's theorem for vector functions of vector variables (see Appendix B) we

have that

q(x* + AYnvn) - q(*) = (dq (x*)T v + O( y
AYn = dx - ) 1n - n

where we interpret the symbol O(Ay ) as a vector of symbols O(Ay) . On letting
- nn

n - ' we see that

"'Tdq oT
I dq (x*) =

*" Let A. be the Lagrange multiplier corresponding to the constraint qi(x) Then

from Taylor's theorem for scaLar functions we have for j = 1,...,m that

Tdqi 2 T d'q i (x)Y 3 O(y) -3-10)

0 = \.qi(yn) Yqi(x*) + iYn (x*) + y Y (L*)y + 0 (4
q i -n -ii - y dx fln-n d x2  n (y 3

Also

0 f(z f(x*) = Ayny - (x*) + y d ) + y4n fl-n d2 - n
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Adding (4-3-10) for j = 1,...,m to (4-3-1)) we obtain

> yT () + 2 yn Td 2C + 0 Y " (4-3-12)

n-n dx -X)+ - dx 2 (_n n)

We are now in a position to obtain our contradiction.

If the sufficient conditions (4-3-2) hold then (x*) = 0
dx- -

Therefore (4-3-12) becomes

0 T 2 d.C 3)JA Yy - Y + 0 yn
- dx2  (

Multiplying by 2/ny we get
n

dx2

Letting n -+ we see that
-yT d 21

o T dx (4-3-13)-dx 2

- Tdq oT
But we have shown that v satisfies v T-d (x*) = 0 T Therefore (4-3-13) contradicts

TX dx
the sufficient condition and we have finished our proof.

4.4 Implicitions of the Jacobian assumption

There appears to be very little discussion of the Jacobian assumption in the

literature (but see Fiacco and McCormick 6). Almost always the assumption is made without

any comment or qualification. More importantly, from the beginner's point of view, it is

made without motivation. But this motivation is simply that, as we have seen, the

assumption guarantees, because of (4-2-9), that there exist unique Lagrange multipliers

such that

df dq
T (x ) + -- (x*) X = 0 (4-4-1)

Since practical problems need not satisfy the Jacobian assumption it seems desirable

to explore the consequences of removing it. If we do so, then we can no longer be sure

that any A exist (even non-uniquely) such that (4-4-1) holds. For instance, consider

the problem

2 2 2

minimize f(x,y,z) x + (y- 1) + (z + I)

subject to q1 (xYZ) = x2 + y2 + z 2 = 0

* and q2 (x,y,z) = x2 + (y- 2)2 + - I 0
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It is clear (see Fig 7) that the only feasible point is (0) which therefore must be the

solution of the problem. Define the Lagrangian by - = f + Xlq 1 + X 2q2 , then for

this example (4-2-12) becomes

ax 2x + 2xA + 2xA 0

2Y + 2YX, + 2(y - 2) X2  0-- =2y + 2yA 1 A =0

-5-- = 2(z + 1) + 2zX 1 + 2zA 2 = 0 (4-4-2)

No values of A I and A 2  can satisfy (4-4-2) at (0) . We have included this example

to illustrate the important fact that even problems with continuous functions f and q

can have isolated solutions. However, if we assume the solution of our equation

constrained problem E is not isolated and that a further assumption (discussed in the

proof below) also holds then we can show that Lagrange multipliers must exist (if not

uniquely).

As in the proof of the sufficiency of (4-3-2) we can construct a sequence of feasible

points z = x* + Ayn y which converges to x* , where yn converges to a unit vector y.

We have already shown that

T d (*) = (4-4-3)
y i-x) _

which means that v is orthogonal to any linear combination of the gradient vectors
• dq.

-qi (x*) . Note that in all sequences of feasible vectors of the form z = x* + Ayny
dx-n - n-n

which converge to x* , the y will converge to some vector y which satisfies (4-4-3).
-n

-, dq i ~
Let r be the number of gradient vectors -- (x*) that are linearly independent.

dqi t dqi  dqrBy renumbering the - (x*) if necessary we can assume that - (x*) .... (x*) are

linearly independent. It is easy to show that there exist exactly n - r orthonormal

vectors v. , say, which in addition are orthogonal to any linear combination of the

dq.fi df
(x*) We now prove that d (x*) is also orthogonal to each of these v. But

0to prove this we need an additional assumption (as mentioned above).

I

Ad V * - .
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For each v. we construct a sequence of the form-j1

z = x* + Ay n(v j + y) (4-4-4)n-n -

where Ayn  is a sequence of positive numbers converging to 0 . Our additional assump-

tion is that we can choose the vectors yn to be a sequence converging to 0 such that

each vector z is a feasible point. Of course, it is sometimes not possible to choose

such vectors. Consider the problem

minimize f = x + (y 2 + (z + )2

subject to ql = X 2 - 0

2 2 2
and q2 = x + y + z - = 0

The feasible set is the circle

X2 2 32x" +y =

Z 0

and the solution of the probl~em is easily seen to be (0) where the gradient vectors of

both q and q, are both 0 whilst the gradient vector of f is 0

Now the two orthonormal vectors that are orthogonal to (0) are in this case

clearly and 0) In particular, for v. = 0 we see from Fig 8 that for zn

to be feasible the vector y has to have a length of at least one unit and hence
_n

calnnot converge to 0

We now return to our proof and assume that the vectors yn exist as required in

(4-4-4). Since zn  is bounded, zn  (or a subsequence) must converge, and the limit

point is clearly x2*

Now by Taylor's theorem

f(zn ) =f(x*) + Ayn(. Y ) (x*) + OAY 2) (4-4-5)
-- n"j "n d n



29

But since f(x*) is a minimum of f we have f(zn) n f(x*) In view of (4-4-5),

this means that

f(x*) + Ayn(v + df ( * ) + 0 Ay > f(x*)

-n j yn) TX -(x* n~

Subtracting f(x*) from both sides and dividing by Ayn > 0 we obtain

( +y -T dx (2* ) + O(Ayn) 0 (4-4-6)

Letting n - , we find that yn 0 0 and Ayn ) 0+ and we see that (4-4-6) implies

T dfv. T (x*) >- 0 (4-4-7)

But we could have equally well chosen Ay in (4-4-4) to be a sequence of negative
n

numbers. Then division by Ay n reverses the inequality sign in the calculation above

and instead of (4-4-7) we obtain

vT df(x*) < 0 (4-4-8)-j dX-

Tdf
(4-4-7) and (4-4-8) together imply that v. (x*) = 0 . Hence we have shown that

df (x*) is orthogonal to each of the v.
dx -J

Now the vectors v1,. ..,nr together with the r linearly independent vectors

dqi (i*) form a basis. This means that any vector, and in particular the vector -f_ (x*)
dxdq. 

dx -

is a linear combination of the v. and the d1(x*) . That is, there exist numbers
-I dx -

0.. ,n-r and A . r such that

d f dq1  dqr
d-(x*) a avl + ... + Q v + I[d (*+ .. + X -d (x*).(4-4-9)

d n-rn-r I dx r _ -

df dq.
But, since the v. are orthonormal and are orthogonal to (x*) and every -- (x*)

- -9 by
T

by premultiplying (4-4-9) by v* (j 1,...,n-r) it is easy to see that

An. =0, (j = 1,... n-r)

If we also put " = 0 , we see that we have established the existencer+ n

of a set of numbers X. satisfying (4-4-1). Thus the X. are Lagrange multipliers and1 1

we have finished our proof.

It follows that, in general, practical problems will have X satisfying (4-4-1).

Hence we have also proved that, in general, an algorithm that solves the equation con-

strained problem E by finding a A to satisfy the sufficient conditions (4-3-2) will

" i II I I I I'T I 'IT 7,? : i,, .. . ... " . . .. '- - "...
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be successful. The corollary is, of course, that such an algorithm must have in-built

safeguards to prevent it from giving misleading results in cases (such as our example)

where no Lagrange multipliers exist.

5 THE KUHN-TUCKER CONDITIONS

in this section we shall consider the general constrained optimization problem C

where there are constraints of both equation and inequality type.

G minimize f(x) subject to q(x) =0

and c(x) 0

where c(x) is an m' × I column vector valued function of x

We have postponed the derivation of the necessary and sufficient conditions of this

problem until after discussing the equation constrained problem E . The reader may feel

that this is because the conditions for the problem C are more difficult to derive

than for any of the problems mentioned earlier. This is not so, for, as we shall see,

the general constriined problem G can be quite readily transformed into the problem E

Hence if we can derive necessary and sufficient conditions for E , we can also do so

for G . It is for this reason that we have left our discussion until this stage. As

always we shall best proceed by considering related but simpler problems.

5.1 A one-dimensional problem

We consider first the problem

ZI minimize f(x) subject to x > 0
x

To derive a first order necessary condition, we proceed as for the unconstrained problem

U1 , by expanding f(x) by Taylor's series about a local solution x*

f(x* + Ax) = f(x*) + Ax df (x*) + O(AX 2 ) (5-I-I)

dx

Now x* is a local solution of ZI means that

f(x* + Ax) > f(x*) (5-1-2)

for all small enough Ax satisfying the constraint x* + Ax 0 0 . Using (5-I-I) to

eliminate f(x* + Ax) from (5-1-2) we obtain

+ xdf Ox2 )

Sf(X*) + Ax - (x*) + OCAx ) f(x*)
~or dx

or x Lf (x*) + O(x 2 )  0 (5-1-3)
ldx
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Note that for x* to be a solution of Z) , also implies that x* satisfies the

constraint, ie that x* > 0 . If x* - 0 , then x* + Ax satisfies the constraint only

if Ax > 0 . Dividing (5-)-3) by Ax > 0 and letting Ax - 0+ , we obtain

df (x*) > 0 (5-1-4)
dx

but if x* > 0 , then x* + Ax satisfies the constraint if Ax >- x* . Dividing (5-1-3)

by such Ax < 0 and letting Ax - 0- we get

df (x*) < 0 . (5-1-5)
dx

If x* > 0 , x* + Ax will also satisfy the constraint if Ax > 0 > -x* . Hence

(5-1-4) will also. Since (5-1-4) and (5-1-5) both hold, we have that

df (x*) 0 . (5-1-6)
dx

We summarize the above. A necessary condition that x* be a solution of ZI is

that

df (x*) < 0 if x* = 0 (5-1-7)
dx

and

df (x*) = 0 if x* > 0 . (5-1-8)
dx

It is customary to abbreviate (5-1-7) and (5-1-8) into the one condition

x* f (x*) 0 (5-1-9)

Since x* must also satisfy the constraint x* > 0 , we readily see that (5-1-9) is in

fact equivalent to (5-1-7) and (5-1-8).

The geometrical interpretation of (5-1-9) is straightforward, though perhaps not

obvious to the beginner. (5-1-9) simply states that x* is either on the constraint

(ie x* = 0) or it is not. If x* is not on the constraint, then the constraint in

no way restricts x* and hence our problem Zi is equivalent to the unconstrained

problem U) . If x* does lie on the constraint boundary, then we have solved the

problem ZI and x* = 0.

5.2 A special n-dimensional problem

We can readily extend the method of section 5.1 to deal with the problem.

Z minimize f(x) subject to x > 0
x
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We expand f(_) about a local solution x*

f(x* + Ax) = f(x*) + AxT .-! (x*) + o I AX
2

Now x* is a local solution of Z so that f(x* + Ax) > f(x*) for all small enough

feasible Ax at x* . In this case Ax is feasible means that x* + Ax > 0 . We

obtain in the usual manner that

AT df + 0 + x 2 > 0 (5-2-I)

In particular, (5-2-1) holds for Ax = Ax . where e. is the ith unit co-ordinate vector

and Ax is the magnitude of Ax

Hence

Ax 3f (x*) + > 0. (5-2-2)

Now (5-2-2) is analogous to (5-1-3) and we can follow exactly the same procedure as in

section 5.1 to obtain results equivalent to (5-1-7) and (5-1-8), namely

(x*) > 0 if x* = 0 (5-2-3)

and
3f
--- (x*) = 0 if x.* > 0 (5-2-4)

- 1.
I

As in section 5.1, we abbreviate these to

X* If (x*) = 0 (5-2-5)
Sax. -1

We can repeat the same procedure for all i Adding the n equations of the form

(5-2-5) together we obtain

X*T ! (x*) 0 (5-2-6)
-dx -

Note that this condition is in fact equivalent to (5-2-5) because x* satisfies the

conditions (5-2-3) and (5-2-4). Hence (5-2-6) is also equivalent to (5-2-3) and

(5-2-4) and is thus a first order necessary condition that x* be a solution of Z

, 5.3 Active constraints and the Jacobian assumption

• Let x* be a solution of the general constrained problem G . Then for each

inequality constraint c.(x) 0 , x* either lies on the constraint boundary

1~ -
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(ie ci(x*) = 0) or it does not. If x* does lie on the boundary, the constraint is

said to be active.

By rearranging the inequality constraints if necessary, we can partition the vector
cT (x) into cT(x) c T(x)I where c (x) < 0 denotes the active constraints and

( A - .- B - ) -A - -

cB(x) < 0 denotes the not active constraints.-B--
As we did for the equation constrained problem, to ensure the existence of unique

Lagrange multipliers we shall have to assume that the columns of

dq dc~( ----x!A (x*)
(dx - :d x - /

are linearly independent. This is the Jacobian assumption for the general constrained

problem G

5.4 The general constrained problem

The first order necessary conditions that x* be a local solution of G are

as follows. There exists an m' x I vector p and an m x I vector A such that

(x*) + L (x*) + L (x*)P = 0_ d-x - x - dx-- -

U T c(x*) = 0 (5-4-1)

and

(5-4-1) are called the Kuhn-Tucker conditions. The vectors X and P are called

Lagrange multipliers. (The w are sometimes called Kuhn-Tucker multipZiers to emphasise

their being distinct from the ).) We can immediately derive (5-4-I) from the results

we have obtained earlier.

Now x" is also a solution of the problem

C minimize f(x) subject to q(x) = 0 and c A(x) 0
x

at least in a small enough region around x* . For if x* is a local solution of G

then

f(x*) < f(x* + Ax) (5-4-2)

for all small enough Ax such that q(x* + Ax) = 0 and c(x* + Ax) < 0 . Now since

0 c(x) is continuous and c (x*) < 0 , then by the intermediate value theorem (see-B -
Appendix B) cB(X * + Ax) < 0 for all small enough Ax . Hence, provided Ax is small

enough, x* + Ax will automatically satisfy the non-active constraints. Hence (5-4-2)

will hold for all small enough Ax such that j(x* + Ax) 0 0 and c A(x* + Ax) 0

-A _
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In particular, (5-4-2) must hold for all small enough Ax such that c A(x* + Ax) - 0

Hence x* is also a solution of C

But C is an equation constrained problem, whose first order necessary conditions

are given by (4-2-12). The Lagrangian for problem C can be written

£(1) = f(x) + x () +YA(X)

where v is a column vector of appropriate length.

Hence if x* is a solution of C then

df dq dcAfx f ) + -= (X*)x + A (*)v =0
dx- dx d

or

dq dcdf (x*) (x*)X - (x*)y (5-4-3)
d--x - - - - d -

We now show that v d0 . Suppose instead that v. < 0 for at least one

Let dx be a feasible vector at x* Note that we can choose dx such that

c.(x* + dx) = 0 i j1I -
c.(x* + dx) < 0
3- -

since otherwise c.(x) is functionally dependent on the other c.(x) Thus• 3- " I -

cj = (A say. Differentiating with respect to x gives

dc. dcAd[_Lk = 7A de

dx d dc A

We see that dc./dx is a linear combination of the other constraint gradients. In] -
particular, at x* this contradicts the Jacobian assumption. Now

r dq.
0 = [q (x* +dx) - q. (x*)JA. dx T A + Ojdxj 2

for i = 1,...,m . Thus

T dq. 12
-dx Xi  = Oldx 2

, Similarly
T dc. 2

-dx - - i Odx12 for i # j O.1

-[
• ! i' n | - i ' ',. . .... .. 4 . .
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Now from (5-4-3) we have that

df T dqi T dcT dc.
dx dx dxxT-- dc T d v + OJdxJ2

- -- d -x1 -d dx
1 i~jdc.

dxT - jv + OtdxJ
2

-dx j

This can be written as

df = - dc.v. + Oldx2
J J

But since dx is feasible we must have that dc. < 0 • Also v. < 0 , therefore

k > 0 where k =-dc.v. . Thus-3

df = k + 0Odx
2

Since k is of order ldxl, and the functions of interest are continuous, we can find

dx small enough so that df < 0 , which contradicts our assumption that x* is a mini-

mum. Hence by reducto ad absurdw , v > 0

Define the m' x I column vector p by T = (V T . 0) . Then rearrange 2 so

that i = 0 if c. is not active and Ii  0 if c. is active. As in sections 5.1

and 5.2 we can abbreviate this to

T
P c(x*) = 0 (5-4-4)

because v i 0 and c(x*) 0 . Also

dcA  dcA  dcB  dc
-A = -A (x*)v + -Bx (x*) (x*) (5-4-5)
dx- x dx dx -dx

Substituting (5-4-5) into (5-4-3) we have

df dq dc
df (x*) + - (x*) + - (x*) = 0
dx - dx - - - - -

0We have thus derived the Kuhn-Tucker conditions. We see that the middle condition (5-4-4)

- is just an abbreviation of the restriction that the multipliers corresponding to non-

active constraints must be zero. (5-4-4) is sometimes called the complementary slackness

condition.

Valw -
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5.5 Second order conditions

As usual we state the conditions first. The second order condition that x* be

a solution of G is that

2
T d. X *ALxT~2 (x*)Ax 0

dx

for all vectors Ax satisfying

Tda T
Ax (x*) 0

dx-

where a(x) represents the vector of equation and active constraints.

The sufficient conditions are

C (x*) = 0x-

and there exist i. > 0 such that

_T(*) = 0

and

Ax Td2. (x*)Ax > 0
- dx

2

for all sufficiently small vectors Ax satisfying

Tda oT

a (X*) 0 OLT dx

(As before, the sufficient conditions imply the existence of Lagrange multipliers.)

The proofs follow exactly those of the analogous conditions of the problem E

except that everywhere active inequality constraints are treated as equation constraints.

The non-active constraints only occur in the Lagrangian, where they are multiplied by

the zero entries of .

6 THE DUALITY THEOREM

We complete these notes with a statement and derivation of the duality (or

*m, Kuhn-Tucker) theorem. This important theorem underlies most numerical methods of

constrained optimization.

6.1 The dual function

We define the dual function t( ,') for the general constrained problem G by

*(',~) min f(LE) + XTq() + T (

'I

. _
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Let x* be the vector which minimizes

f(x) + _X*Tq(x) + l*Tc(x)

where P* > 0

Note that

f(x*) + A*Tq(x*) + (x*)

6.2 Statement of the theorem

x* is a solution of G

(i) if (Q*,.i*) > 4H,O) for all X and for all p > 0

(ii) only if (provided the matrix 32 C/3x 2 is everywhere positive definite) there

exist A*, u* which maxi"m.::e (_,_1) for all X and for all P > 0

6.3 Proof of part (i)

Let l_* > 0 and X* be vectors which maximize (A,£) for all X and for all

0 . Then X*,w* must satisfy the Kuhn-Tucker conditions for the maximization problem

maximize (A,_ ) subject to W > 0

Denote the inequality constraints P -> 0 by y() - '< 0 . Let the multipliers

associated with yi) be a . Then since there are no equation constraints, (5-4-1)

becomes

__ + -O 0

+ 0 (6-3-1)

T 0

and

4.

Since (u) = 0 and = I , and I > 0 , (6-3-I) becomes

I- IO

- -. - - -.---- -- .
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-a < 0 (6-3-2)

TT

Let i(0,0i) be the vector which minimizes f(x) + X Tg(x) + PT c(x)

Then

WP) f IT q(kA ))+ 11T ())

Now

-- -- _ -qc --aDX 7x 3x- - T -_ x

-+ q + c

D- df Dx dq 3x dc+ - +d =)X dx - +; x q

where we have used (A-2). Therefore

dx df dq dc
+ A X +- x7 + q( )

3N d\ \dx dx - dx-/) -

= d f dd c

At any point x which minimizes .£ we have + a X + - P = 0
dx dx- dx-

There q() (6-3-3)

Similarly,

. = c() (6-3-4)

-n particular, (6-3-3) and (6-3-4) must hold for x* =

Substituting them into (6-3-2) we obtain

q(x*) = 0 1
c;x*) (6-3-5)

• C(X*) < 0

iT c(x
*
) = 0 (6-3-6)

(6-3-5) show that x* satisfies the constraints of the problem G

WV ~-r7
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Let x be any point that also satisfies the constraints. Then by definition of

f(x*) + x*Tq(x*) + P*Tc(x*) < f(x) + *T *TC(x) (6-3-7)

But q(x*) and q(x) are zero. From (6-3-6), *T c(x*) is also zero. Since c(x) < 0

and * 0 we have i c(x) < 0 . Hence we get

f(x*) f(x*) + X*Tq(x*) + *T c(x*)

f(x) + X*Tq(x) + .*T = f(x) + *Tc(X) _ f(x)

Hence x* is a solution of the problem G

6.4 Proof of part (ii)

Let x* be a solution of G and let 32£/3x 2  be positive definite everywhere.

At any point x(\,P) which minimizes £ we must have

df dq dc
S--= = 0

dx dx - dx -

which can be written M M1
df + cdq.
d1 1 0 (6-4-1)

~~i=I 
=

Differentiating with respect to X. gives

x3

i.df) + i + Z-i- _d = 0. (-4-2)

In view of (A-3), (6-4-2) becomes

Tx T
-- ~fT 2 + + 2  m 2 )FdxZ -3 + + + Ijj 2- + X-

+k + -ii
T7x d"td_ x

(d d~ =

which can be further simplified to

d- I + (6-4-3)

I

.!A
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For j l,...,m, the row vector equations (6-4-3) can be combined to obtain the matrix

eq u a t ion 
d 2C T T + d

+Td2-_ + = 0 (6-4-4)

Since d2iC/dx 2  is positive definite it has an inverse. Hence (6-4-4) may be written

= - \.dxl~2) (-4-5)

Similarly, by differentiating (6-4-1) by p. we obtain3

T i-Iax c . 646_== - -r 6--6

Putting

= " and a =

where cA is the vector of active constraints, we have

2 9 j
dv2 k32~ :a

dv 2 2

But from (6-3-3) and (6-3-4) we have

2 3X dx (6-4-7)

and

* 

ax _ ( - L-' - _ dc (6-4-8)

Similarly we have

2 ax dq
3--. - ap dx (6-4-9)

and
72 ax dc
a" a = d (6-4-10)

2 4' * . -- -
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Therefore

] D dq : d

20 _ X-- X

dv 3x'dq 3x'dc

9dx 3p d

Substituting in (6-4-5) and (6-4-6) we get

T -1 )T 2£\)(d. dq (d ~!2 C dc

dv (ig:~.g ) (dc
dx 2 dx: idx dx2 x

2 d~ J 2 -

Hence

- -= da d2.C da
kdx) d (6-4-1))d2 - dx 2 d~x (--

Since da/dx is of full rank and d2£/dx 2  is positive definite, (6-4-11) implies that

d 2/dy_2  is negative definite.

Define

to be the Lagrange multipliers corresponding to x* . We shall show that v_* satisfies

all the sufficient conditions to maximize 4(v) for all ii > 0 and for all X

Let I be the Lagrange multipliers of this problem. Then the Lagrangian is

L = - P_1  Now from (6-3-3) and (6-3-4) we have that

: ,.,3L 83

= = q(x*) = 0

dL = - y = c(x*) (6-4-32)

We set yi. 0 if ci(x*) - 0 and y i = - ci(x*) if c.(x*) < 0 . Then y 0

Also, because v is itself a Kuhn-Tucker multiplier, we have that Vi = 0 if

c i (x*) 0 and u >0 if c.(x*) < 0 . Hence y. = 0 if Pi = 0 and yi > 0 if

S i > 0 . We can express this as yT W = 0 . From (6-4-12) we therefore have that

dL/dp = c(x*) - X = 0 . Hence dL/dp_ = 0 and therefore v* satisfies the sufficient

0000 conditions and we have finished our proof.
I.0
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Appendix A

STANDARD RESULTS OF VECTOR DIFFERENTIATION

Apart from the results discussed in section 2.2, the following are also used in

these notes.

(1) Let x v uT) and suppose f - f(u,y)

Then the second totaZ derivative of f along the contour v V(u) is given by

d 2f Idx T d2v.
2 f dux d \ u~~ (A-I)

du
2  -u dx 2 

T  j du2-- -- j -

(2) Let f = f(x) and suppose x = x(u) , for some vector u . A chain rule

applies in the form

df dx df
= du_ (A-2)du du dx

(3) Let f be an m-vector function of n variables x . Let the x also

depend on a scalar t . Then f is implicitly a function of t and the chain rule

is

df df\T dx
_ . -- (A-3)

."

FRW=NG AGE aLAWL,-,r FI1,0D
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Appendix B

STATEMENTS OF THEOREMS ASSUMED IN THE TEXT

B.I Implicit function theorem
3

Let u(x) be m continuously differentiable functions of n variables x (m < n).

If

rankk,) = m

then it is possible to solve for m of the variables, say xi,...,xm, in terms of the

remaining n - m variables xm+1 .... xn

ie
x. (x .i.,x )(i= . .m .
. 1Xm+l n

The m functions ' are called implicit functions.

B.2 Mean value theorem

Both the mean value theorem and the second mean value theorem can be derived from
3

the fundamental inequality

Let f be a differentiable function of n variables x Then there exists

a number satisfying 0 < i < I such that
df +

AxT dfx + CAx) = f(x + Ax) - f(x)

B.3 Second mean value theorem

Let f be a twice differentiable function of n variables x Then for

all 0>

df df A2f
df(x + EAx) = d(x) + df ()AX + 0(2 )

-- dx

B.4 Taylor's theorem for vector functions of vectors

Let f be a column of m differentiable functions of an n-vector x

Then T
/df\ A1

f(x + Ax) Ax +0 2

3B.5 Taylor's theorem for scalar functions of vectors

Let f be a scalar valued and at least twice differentiable function of an

n-vector x Then

f(x + Ax) df(x) + (f Ax + JAXT d2f Ax + o l3
dx2- ,xi

- ..-------------..-.--- w ' -



Appendix B 45

Note that

( df\T Tdf
kli) - - dx

B.6 The intermediate value theorem
5

We state the n-dimensional analogue of this well-known theorem in the following

form.

Let f be a continuous function of n variables x . Let f(xI) < 0 and

f(x2) > 0. Then there exists a point lying on the line segment joining x, and

x2 such that f( ) 0

R

I

1 -)
00
~00
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LIST OF SYMBOLS

a(x) vector of active constraints

(ai) matrix whose ij-entry is aij

(A)i the i,j-entry of matrix A

c(x) vector of m' inequality constraints

df the gradient vector, eg the column vector of first partial derivatives of the
dx scalar function f

d f the Hessian matrix, eg the matrix of second partial derivatives of the
dx scalar function f

f(x) a scalar function of the n variables x

f(x) a vector-valued function of the n variables x

I the n x n identity matrixn

L the Lagrangian of the dual function

£ the Lagrangian function
. = f + ATq for the equation constrained problem
£ = f + XTq + PTc for the general constrained problem

0 column vector of zero entries

OT  row vector of zero entries

O(Axn) terms of order Axn  and higher terms

OAxin  terms of order jAxin and higher terms

10,11 the closed interval of numbers between 0 and I , ie the interval of
numbers x such that 0 < x < 1

W(x) vector of m equation constraints

T symbol of vector or matrix transposition

x column vector of (not necessarily n) variables x ,...,x n

x* solution of the particular minimization problem under discussion

X column vector of Lagrange multipliers

X* column vector of Lagrange multipliers corresponding to x* in duality theorem

column vector of Kuhn-Tucker multipliers

column vector of Kuhn-Tucker multipliers corresponding to x* in
duality theorem

the dual function = min f(x) + XT q(x)+ p (c).

A definition symbol, ie the left hand side of the equation is defined by the
right hand side

I

.1



47

REFERENCES

No. Author Title, etc

I D.C. Luenberger Introduction to linear and nonlinear programming.

Reading, Massachusetts, Addison-Wesley (1973)

2 L.C.W. Dixon Nonlinear optimisation.

London, The English Universities Press (1972)

3 M.D. Intrilligator Mathematical optimization and economic theory.

Englewood Cliffs, New Jersey, Prentice-Hall Inc. (1971)

4 E. Kreyszig Advanced Engineering Mathematics.

John Wiley & Sons, Inc. (1972)

5 W. Rudin Principles of mathematical analysis.

McGraw-Hill Inc. (1964)

6 A.V. Fiacco Nonlinear programming: sequential unconstrained minimization

G.P. McCormick techniques.

Wiley, New York (1968)

o

Ii

'4 l lI Ii 1 I



Figs 1&2

Fig 1 The paraboloid z +2 Y

Fig 2 The surface z =x2 + y
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Fig 3 The paraboloid z x+ y + y
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Figs 5&6

Fig 5 The saddle-shaped surface z y2 x
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Fig 6 Contours of f(x,y) =const in problem E2
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of the two spheres q, =0 and q 2 0
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Fig 8 The constraints q, x + y 0 and

q2 x x2 + y2 + z 2 f 1 = 0 , as well as a typical vector
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